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Quantized Klein-Gordon Field in a Cavity of Variable Length (*).
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PACS. 03.70. — The theory of quantized fields.

Summary. — An effective Hamiltonian is found for the Klein-Gordon field enclosed
in a one-dimensional cavity with a moving wall. From this Hamiltonian the number
of particles created from the vacuum by the motion of the boundary is determined.

The normal-mode decomposition of a quantized field inside a cavity with a moving
wall provides an interesting example of an effective Hamiltonian formulation of an open
system. The case of a massless field has received considerable attention in recent years (1-6)
partly in eonnection with the problem of ereation of particles by black boles (22) and
partly because of its potential application in the laser physies (). For a massless field
the classical equation of motion can be solved in a number of ways including the method
of conformal co-ordinate transgformation (1) and the effective Hamiltonian approach (¢).
One of the advantages of the latter is that it can be used for massless or massive fields
and for relativistic as well as nonrelativistic particles. Here we consider the effective
Hamiltonjan formulation for a Klein-Gordon field which is confined to a one-dimensional
cavity of variable length I(?), where the boundaries are perfectly reflecting. This system
can be described by the Hamiltonian

I(t)
(1) H=1 f [m2(w, &) + 92, 1)+ mepie, )] do,
0

where v, denotes the partial derivative of v with respect to #. The field amplitude v
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and its momentum density x satisfy the boundary conditions

(2) Y= 0,1) = w(w = [(t), t) =0,

(3) ale = 0,1) = n{x = L), t) = 0,

and the equal-time commutation relations

(4) [v(e, 1), n@', 8)] = 0@ —a') .

Both y(x,1) and n(w, t) satisfy the Klein-Gordon equation, and because of the condi-
tions (2), (3) and (4), there is a reciprocity symmetry in this system, viz., the interchange
¢ — 7, ® > — ¢ leaves the equations of motion and the boundary conditions invariant.
Let us define the effective Hamiltonian for this system with the help of the unitarity
time-dependent transformation (7}

0
(5) H,. = exp [iW] [exp [V (H—— i é}) exp [— @'V]] exp [—iW],
where
L(¢)
(6) V(¢) = log 4 f @' %—, P(a') da’
0%
0
and
Li¢)

1 %’ 2"\ da’

0

and where A is the time-dependent scale factor
(8) Mt) = L(8)/L(0) .

By introducing the variable £ = x/A, we can write

(9) exp [¢W] exp [¢V]yp(x) exp [— V] exp [—iW] = Aip(§)
and

1
(10) exp[iW]exp [iV]n(l) exp[—iV]exp[—iW] = —;—%n(é) .

Hence the commutation relation (4) remains unchanged after transformation, but the
boundary conditions (2) and (3) in terms of & become simple

(11) P& = 0,1) = p(§ = L(0),1) = 0.

(") M. Razavy: Lett. Nuovo Cimento, 37, 449 (1983).
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By carrying out the transformation indicated in (5) we find H, to be

(o)

12 H, = o Ly 2y? ié +1 dé
(12) oit = 2 E44 —f-ﬁ’l’g"f“’m’l’ -7 Y Eﬂ‘l’ ,
0

where ¢ and x are now dependent on & and ¢ and % denotes dA/dt. From (12) we can
derive the equations of motion for z(&, t) and y(&, {) and these are identical in form, and
for the latter the equation of motion is

1 23 yi 1
13 (1—A2e?) pee—w,, + R RE s 72&%—3%2)5% +

Thus in this transformation the reciprocal symmetry of the field is preserved. To write
H,, in terms of the creation and annihilation operators we expand u(&, 1) and =(&, 1)
in terms of sin ((kn/L(0))&), where % is an integer. We can simplify the result by
choosing L(0) = n» and writing

AL | + .
and
/i ©
— 1 t__ i
(15) (&, 1) = (nl)ék=1wk(t)(ak a,) sin (k§) ,
where
(16) wy(t) = (k% + m2A%(1))*.

By substituting (14) and (15) in (12) and carrying out the integration over &, we obtain

1 1\ ik _
(17) Heff:m§wk(azak+—é)+7 33 (1)

k=1 j#k

ik (o 4 o4 t +
'jz—kz —a; (0p 05 — G0 4 ara; — ;)

The equations of motion for a; and a,,: can be found from (17), for example for da,/d¢
we have the following relation:

cday wy(t)
4 _

(18) A A

ax(t) + iRy(t)

where R,(t) is given by

(19) Rty =25~y [(ﬂ)’f (a,—a) + (“’—) (af + a»)]
ke =k [\op W

sl a0
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with an equation similar to. (18) for (d/dt)a,,’:. The number operator for particles in
the state k is defined by

(20) N, = a;a

and from this definition and the equations for dea,/dt and da,f/df; we obtain the rate of
change of N,;

dn ‘
(21) Tf: 4R, + Rla,.

Now suppose that at ¢ = 0, there are no particles in the system, <.e.
(22) a7 (0)a,(0)]0> = 0

then the number of particles in the state & that are created between ¢ = 0 and t = oo
iy given by

(23) (N> =f<o|a,tRk + Ria,|0>dt.
0

An approximate value for (I¥,> can be found by solving (18) by perturbation, i.e. by
assuming that the expectation value of w,(t)ay(t)/A{t) is larger than the expectation
value of iR,(t). In this way we can relate al®(t), the zeroth-order and a(’(t), the first-
order term to the in-field operators a,(0) and a;:("O)' in the following way:

(24) 6Ot )= exp [ iDy(1)]ax(0)
and
t
(25) a0(t) = oxp [—iy(1)] [akw) + [ exp [i@k(t'nR;“(t')dt'] ,

0

where R®(1) is R, (t) defined by (19), but with a; and a} being replaced by a{*(f) and
al®(#), respectively, and where
t

(26) B (t) = f [on)/A)] ¢ .

0

Again from the differential equation satisfied by af"), i.e.

d t). :
(27 ig; all) = ‘;’E—i))a;” + B (t)

and (21) it follows that
(28) N> [<OaLVED + B af]0) di
0

= 2 Real f d f ORI ) BO()]0) exp [4( Bu(t) — Bi(t))] 8"
S

0 1
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substititing for R(¢) and RI(#') and caleulating the vacuum expectation value in (28),
we find

© t
203 A ) )
) fdt oG cos [D, (1)) + Pi{(t') — Dp(t) —

0 0
(eon(?) (t))] [wk(t’>—wf(t’)]
WA F .
(0] t[(wk(t)w(t))% (wp(t)wy(t'))E

For a given A(f) we can determine @,(t') from (26) and by integrating over ¢ and ¢ and
summing over § we find (N;>. Now let us determine the condition (s) under which the
total number of created particles is finite, 7.e.> (N,> has a well-defined value. For
this purpose we write

(30) <2Nk>~zz z( ) K,
*=1 P

where K; is defined by the two integrals in (29). Since A(l) is a finite positive number,
it varies between 4, and 4,, i.e. 1, <A(t)<A,. Then for any integer j such that j 3> mi,,
we have

(29) Wiyp=23, (

%k :’ — ke

dt
l(t)

0

(31) a,0) = f [(20) +mei e

This relation shows that the asymptotic form of Ky, for k < 4,m and § > A,m has a
simple form

i@ [ i

(32) Ky ——e—— P - f 0 f ) [k + f)(z'—&)1de,
where

, d . d

£ 17

(33) z’:f—l and z:f—l.

Alty) Aty)

4] 0

By changing the variables ¢ and ' in (32) to # and 2’ defined by (33), we find after some
simplification that the asymptotic form of K, is

(34) Ky — f dz cos [(k -+ )10,

IGYICR
35 d%_
(35) o) = f YT

0
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From (34) if follows that if f(¢) and its first derivative are continuous, and if

(36) (‘_1_@) —o0,
4 Jeso

then K,; decreases at least as (k + §)~* and when this is the case, then the number of
created particles is finite. If we substitute (35) in (36) we find that the condition (36)
is equivalent to

(37) t=0)=0

and this together with the continuity of i(z) are the conditions for <Z Nk> to befinite.
k

Having obtained <(N,)>, we can determine the energy associated with these particles.
The Hamiltonian (17) in the limit ¢ — oo reduces to

(38) H (t = c0) = Z (m2 o kz/lz(oo))%(Nk 1)

k=1

and, therefore, the change of the energy of the system is

(39) By— By = 3 {(m? + &2[22(00) (<O N|0> + §) — §(k? 4 m?)i},

k=1

where the last term, Lw;, is the zero point energy of the field at { = 0.



